Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(1): 29-39, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38305688

RESUMO

Accurate chromosome segregation in mitosis relies on sister kinetochores forming stable attachments to microtubules (MTs) extending from opposite spindle poles and establishing biorientation. To achieve this, erroneous kinetochore-MT interactions must be resolved through a process called error correction, which dissolves improper kinetochore-MT attachment and allows new interactions until biorientation is achieved. The Aurora B kinase plays key roles in driving error correction by phosphorylating Dam1 and Ndc80 complexes, while Mps1 kinase, Stu2 MT polymerase and phosphatases also regulate this process. Once biorientation is formed, tension is applied to kinetochore-MT interaction, stabilizing it. In this review article, we discuss the mechanisms of kinetochore-MT interaction, error correction and biorientation. We focus mainly on recent insights from budding yeast, where the attachment of a single MT to a single kinetochore during biorientation simplifies the analysis of error correction mechanisms.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Cinetocoros , Microtúbulos/genética , Mitose , Segregação de Cromossomos , Proteínas de Saccharomyces cerevisiae/genética
2.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851957

RESUMO

To establish chromosome biorientation, aberrant kinetochore-microtubule interaction must be resolved (error correction) by Aurora B kinase. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still unclear how kinetochore-microtubule interactions are exchanged during error correction. Here, we reconstituted the budding yeast kinetochore-microtubule interface in vitro by attaching the Ndc80 complexes to nanobeads. These Ndc80C nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. Similar reconstitutions with purified kinetochore particles were used for comparison. We suggest the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment, and promotes the exchange to a new lateral attachment, leading to error correction.


Assuntos
Aurora Quinase B/metabolismo , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Mitose , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aurora Quinase B/genética , Cinetocoros/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
3.
Curr Biol ; 29(9): 1536-1544.e4, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006569

RESUMO

For proper chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (chromosome bi-orientation) [1, 2]. To promote bi-orientation, Aurora B kinase disrupts aberrant kinetochore-microtubule interactions [3-6]. It has long been debated how Aurora B halts this action when bi-orientation is established and tension is applied across sister kinetochores. A popular explanation for it is that, upon bi-orientation, sister kinetochores are pulled in opposite directions, stretching the outer kinetochores [7, 8] and moving Aurora B substrates away from Aurora-B-localizing sites at centromeres (spatial separation model) [3, 5, 9]. This model predicts that Aurora B localization at centromeres is required for bi-orientation. However, this notion was challenged by the observation that Bir1 (yeast survivin), which recruits Ipl1-Sli15 (yeast Aurora B-INCENP) to centromeres, can become dispensable for bi-orientation [10]. This raised the possibility that Aurora B localization at centromeres is dispensable for bi-orientation. Alternatively, there might be a Bir1-independent mechanism for recruiting Ipl1-Sli15 to centromeres or inner kinetochores [5, 9]. Here, we show that the COMA inner kinetochore sub-complex physically interacts with Sli15, recruits Ipl1-Sli15 to the inner kinetochore, and promotes chromosome bi-orientation, independently of Bir1, in budding yeast. Moreover, using an engineered recruitment of Ipl1-Sli15 to the inner kinetochore when both Bir1 and COMA are defective, we show that localization of Ipl1-Sli15 at centromeres or inner kinetochores is required for bi-orientation. Our results give important insight into how Aurora B disrupts kinetochore-microtubule interaction in a tension-dependent manner to promote chromosome bi-orientation.


Assuntos
Aurora Quinases/genética , Centrômero/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aurora Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Biol Cell ; 26(19): 3424-38, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26246606

RESUMO

The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome.


Assuntos
Aurora Quinase A/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fuso Acromático/metabolismo , Insuficiência Adrenal/enzimologia , Insuficiência Adrenal/metabolismo , Animais , Ciclo Celular/fisiologia , Células Cultivadas , Drosophila melanogaster , Acalasia Esofágica/enzimologia , Acalasia Esofágica/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Ligação Proteica
5.
PLoS One ; 7(10): e47232, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056615

RESUMO

The Cas4 protein is one of the core CRISPR-associated (Cas) proteins implicated in the prokaryotic CRISPR system for antiviral defence. Cas4 is thought to play a role in the capture of new viral DNA sequences for incorporation into the host genome. No biochemical activity has been reported for Cas4, but it is predicted to include a RecB nuclease domain. We show here that Cas4 family proteins from the archaeon Sulfolobus solfataricus utilise four conserved cysteine residues to bind an iron-sulfur cluster in an arrangement reminiscent of the AddB nuclease of Bacillus subtilis. The Cas4 family protein Sso0001 is a 5' to 3' single stranded DNA exonuclease in vitro that is stalled by extrahelical DNA adducts. A role for Cas4 in DNA duplex strand resectioning to generate recombinogenic 3' single stranded DNA overhangs is proposed. Comparison of the AddB structure with that of a related bacterial nuclease from Eubacterium rectales reveals that the iron-sulfur cluster can be replaced by a zinc ion without disrupting the protein structure, with implications for the evolution of iron-sulfur binding proteins.


Assuntos
Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cromatografia em Gel , Exodesoxirribonucleases/classificação , Exodesoxirribonucleases/genética , Proteínas Ferro-Enxofre/classificação , Proteínas Ferro-Enxofre/genética , Filogenia , Sulfolobus solfataricus/enzimologia
6.
FASEB J ; 24(10): 3981-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20547660

RESUMO

This study investigated the expression and tissue distribution of inositol monophosphatase (IMPA1) and characterized its role in salinity adaptation in the eel. The coding sequence of eel IMPA1 was determined and confirmed to be orthologous to the mammalian gene/enzyme by phylogenetic analysis and structural modeling. Quantitative real-time PCR and Western blot techniques indicated up to 17-fold increases in mRNA expression and 2-fold increases in protein abundance in major osmoregulatory tissues following transfer of fish to seawater (SW). This was accompanied by up to 5-fold increases in enzyme activity, and 1.8- and 3-fold increases in inositol contents within the gill and kidney, respectively. Immunohistological studies revealed that IMPA1 protein expression predominated in SW-acclimated fish within basal epithelial/epidermal layers of the gill, esophagus, intestine, skin, and fins. SW transfer also induced a 10-fold increase in inositol content in the fin. IMPA1 immunoreactivity was also identified in chondrocytes within the cartilagenous matrix of the gills and fins, as well as in clusters of interstitial cells surrounding the kidney tubules. The observed increases in expression of IMPA1 highlight a protective role for inositol within various eel tissues following SW acclimation. This constitutes an adaptive mechanism in teleost fish naturally exposed to hypertonic environments.


Assuntos
Adaptação Fisiológica , Enguias/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Cloreto de Sódio , Animais , Sequência de Bases , Western Blotting , Clonagem Molecular , Primers do DNA , DNA Complementar , Imuno-Histoquímica , Inositol/farmacocinética , Filogenia , Reação em Cadeia da Polimerase , Distribuição Tecidual
7.
EMBO J ; 26(6): 1560-8, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17318177

RESUMO

In mammalian RNA polymerase I transcription, SL1, an assembly of TBP and associated factors (TAFs), is essential for preinitiation complex formation at ribosomal RNA gene promoters in vitro. We provide evidence for a novel component of SL1, TAF(I)41 (MGC5306), which functions in Pol I transcription. TAF(I)41 resides at the rDNA promoter in the nucleolus and co-purifies and co-immunoprecipitates with SL1. TAF(I)41 immunodepletion from nuclear extracts dramatically reduces Pol I transcription; addition of SL1 restores the ability of these extracts to support Pol I transcription. In cells, siRNA-mediated decreased expression of TAF(I)41 leads to loss of SL1 from the rDNA promoter in vivo, with concomitant loss of Pol I from the rDNA and reduced synthesis of the pre-rRNA. Extracts from these cells support reduced levels of Pol I transcription; addition of SL1 to the extracts raises the level of Pol I transcription. These data suggest that TAF(I)41 is integral to transcriptionally active SL1 and imply a role for SL1, including the TAF(I)41 subunit, in Pol I recruitment and, therefore, preinitiation complex formation in vivo.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica/fisiologia , Imunoprecipitação da Cromatina , Primers do DNA , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...